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+ UCLA + JPL Joint Institute
» JIFRESSE Research Foci & Objectives
» Regional Model Development & Framework
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' » Today's California Climate Change Themes
X Hydroclimate (Kim et al. 2008, POSTER 4)

X Sierra snowpack & snow physics (Kapnick and Hall,
2008; Waliser et al. 2008; POSTERS 54 & 5x?)

X Santa Ana wind conditions (Hughes et al. 2008;
POSTER 45)
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~ « Summary and Future Work



California Climate Change: UCLA+JPL

In 2006, UCLA & JPL established a Joint Institute for

Regional Earth System Science & Engineering (JIFRESSE)
to promote, stimulate, and engage UCLA (Modeling) and
JPL (Observations) in cutting edge Earth System science
research to:

www.jifresse.ucla.edu
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X Increase understanding about factors that affect
climate-related environmental changes, with particular
attention to regional/CA issues;

X Support the design of future JPL/NASA space missions
& observation networks related to detecting,
monitoring, and projecting climate changes;

X Enhance the educational mission of UCLA through
collaboration with JPL.

www.jifresse.ucla.edu




California Climate Change: Motivation

IPCC AR4 model projections agree that California will warm in this century
but disagree on whether it will become wetter/drier. This implies that
some physical processes are inadequately represented in GCMs.
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Apply our unique strengths in system engineering and observations (JPL)
and process understanding and modeling (ULCA) to improve our
capabilities to detect and predict changes in California’s climate and
ecosystems and contribute to the State’s awareness and understanding,
and adaptation and mitigation strategies.
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v' A snow water equivalent dataset was
developed from 1930 -2007.
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| v A snow water equivalent dataset was
developed from 1930 -2007.
v' For each winter season, the date of
peak snow mass was calculated.
v Trend: date of peak snow mass occurs
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California Snowpack Change: Motivational Study
Kapnick & Hall, 2008
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v A snow water equivalent dataset was
developed from 1930 -2007.

v' For each winter season, the date of
peak snow mass was calculated.

v Trend: date of peak snow mass occurs
earlier by 0.4 days per decade.

A

Based on these results
and considerations of
temperature projections,
the date of peak snow
mass would be expected
to occur 3-9 days earlier
by end of century.
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California Snowpack Projections: Model Uncertainties
What do the models (directly) project?

IPCC AR4 Projections
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These are the types of questions

JIFRESSE is addressing.




JIFRESSE: Building a Regional Earth System Model |

RESMs — and their dynamic downscaling of GCMs - afford:

X greater spatial resolution [O(1-10km)]

X inclusion of more processes and interactions

| X closer connections to societal impacts

| = a complementary role to GCMs

X a numerical laboratory for GCM parameterization development
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X greater spatial resolution [O(1-10km)]
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JIFRESSE: Building a Regional Earth System MQ%
‘g‘ !... |

Ongoing & Future %;
Air Quality Studies




JIFRESSE: Building a Regional Earth System M

(M
' - |
- Ongoing Atmos-Ocean

& Ocean-Bio Coupling iy
Studies & Forecasts %




JIFRESSE: Building a Regional Earth System MQ'gI!

Ongoing
Hydrology and Synotpic
Studies e.g. Today’s Snowpack
& Santa Ana Wind
Studies




California Climate Change: Dynamical Downscalmgh
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California Climate Change: Dynamical Downscal‘g
Hydroclimat%Changes: Oct-March; ~2050 vs 1975; 36km
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HydroclimatQ&Changes: Oct-March; ~2050 vs 1975; 36km
2m Alr Temperature (C) - SWE (%) Warming: 0° to 2.5°C.
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HydroclimatQ&Changes: Oct-March; ~2050 vs 1975; 36km
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California Climate Change: Dynamical Downscalqug
HydrochmatqﬁChanges Oct-March; ~2050 vs 1975; 36km
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California Climate Change: Dynamical Downscaling
Impac%t of Model Resolution/Topography :
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California Climate Change: Dynamical Downscaling
Impact of Model Resolution/Topography
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California Climate Change: Dynamical Downscaling
Impact of Model Resolution/Topography
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California Climate Change: Dynamical Downscaling
Impact of Model Resolution/Topography
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California Climate Change: Dynamical Downscaling
Impag:[ of Model Resolution/Topography
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California Climate Change: Dynamical Downscaling
Impact of Snow Albedo/Aerosol Deposition: Role of Emissions?
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California Climate Change: Dynamical Downscaling
Impact of Snow Albedo/Aerosol Deposition: Role of Emissions?
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California Climate Change: Dynamical Downscaling
Impact of Snow Albedo/Aerosol Deposition: Role of Emissions?
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California Climate Change: Dynamical Downscaling
Impact of Snow Albedo/Aerosol Deposition: Role of Emissions?

Aerosol Deposition
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Sln%le versus multi-layer snow model
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Sln%le versus multi-layer snow model
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California Climate Change: Dynamical Downscallng
Impact of Snow Layer Physics Representation ‘
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California Climate Change: Dynamical Downscaling
Impact of Snow Layer Physics Representation *‘

T—°§ Modeled Snow Layers
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Significant Reductions in
modeled SWE biases —
typically an over estimate.
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California Climate Change: Dynamical Downscaling
Impact of Snow Layer Physics Representation <‘
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California Climate Change: Dynamical Downscaling
Impac;t of Snow Layer Physics Representation «‘
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California Climate Change: Santa Ana Winds
Hughes et al. 2008
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California Climate Change: Santa Ana Winds
Hughes et al. 2008
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= Analysis of a regional
climate hindcast'indicates
Santa Ana wind conditions
have decreased 30-50%
from 1959 to 2001.

X Reduction arises from both
large-scale synoptic forcing
(strong offshore upper level
winds) and local katabatic
forcing (cold desert air
pouring through the gaps).

X The climate change dynamic
downscaling experiment
suggests further decreases
in the future (~2050).




Summary

X An trend in earlier Sierra snowmelt timing is present in
monthly SWE observations - attributed to the sensitivity of
peak snow mass date to local March temperature.

X Regional dynamic downscaling experiments have been
performed based on NCAR CCSM SRESA1B suggesting
considerable changes to CA hydroclimate by 2050.

X There is considerable model sensitivity of CA snowmelt and
snowpack loss to model resolution, snow albedo treatment,
and model snow layer formulation.

X Santa Ana winds are less frequent under climate warming
conditions because the continental interior warms more than
ocean, altering large-scale and local pressure gradients.

X Caveat: Some results based on only one GCM projection &

one RESM formulation.
www.jifresse.ucla.edu



Future Work

2 Regional model validation with ground-based and satellite
observations where possible : synoptic fields (e.q.,
temperature, clouds, winds), hydroclimate (e.g. snowcover,
albedo), air quality.

X Continue work on improving snow physics, e.g., multi-layer
formulation, snow spectral albedo parameterization based on
snow grain size and black carbon/dust contamination.

X Compare observational dataset of peak snow mass date to
regional model output both for validation purposes and for
understanding mechanisms for the changes.

2 Santa Ana Winds: 1) Validate analysis against ground-based
observations, and 2) Identify how other critical fire weather

parameters (e.g., relative humidity) have changed.

X Investigation of the impact of anthropogenic climate change
on the air quality in California. www jifresse.ucla.edu



